[$\$ 15.6$ Spherica)/Cylindrical cords
Cylindrical coords are easier but spherical coords are more mportant

- Cylindrical coors-

Uses polar lords \wedge_{i}^{z} for x and y, but keep z unchanged"

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z
\end{aligned}
$$

Idea: To change variables of Int. write Riemann Sum in terms of (r, θ, z)

- start with D in (x, y, z) coords
- Discretize in (r, θ, z)

$$
\begin{array}{ll}
-D_{1} \text { scretize in }\left(r_{1} \theta_{1} z\right) & \Delta \theta=\frac{\theta_{b}-\theta_{a}}{N} \\
\theta_{a}=\theta_{0}<\theta_{1}<\cdots<\theta_{N}=\theta_{b} & \Delta r=\frac{r_{b}-r_{a}}{N} \\
r_{a}=r_{0}<r_{1}<\cdots<r_{N}=r_{b} & \Delta z=\frac{z_{b}-z_{a}}{N} \\
z_{a}=z_{0}<z_{1}<\cdots<z_{N}=z_{b} &
\end{array}
$$

Express Remann Sum in (r, θ, z)

$$
\begin{aligned}
& I=\iiint f(x, y, z) d V \text { (write as } \operatorname{limit} \\
& \text { oof Riemamn Sum } \\
& =\lim _{N \rightarrow \infty} \sum_{\left(x_{i}, y_{i} ; z_{n}\right) \in D} f\left(x_{i}, y_{i} z_{n}\right) \Delta x \Delta y \Delta z \\
& =\lim _{N \rightarrow \infty} \sum_{\left(r_{i} \theta, z_{m}\right) \in D} f\left(r_{i} \cos \theta_{j}, r_{i} \sin \theta_{j}, z_{m}\right) A \Delta r \Delta \theta \Delta z \\
& \text { Ampinfication? } \\
& \text { (factarfor Vo) }\}
\end{aligned}
$$

$$
\Delta x \Delta y \Delta z=\Delta V=A \Delta r \Delta D \Delta z
$$

Amplification factor $3{ }_{3}$ forrvolume
To get the amplificaron factor for Volume, blow up the rectangle $\Delta r \Delta \theta \Delta z \ldots$

Conclude from the geometry:

$$
\Delta x \Delta y \Delta z=\Delta V \approx \Delta r \Delta \theta \Delta z
$$

Amp frication
factor $A=r$
We say: $d x d y d z=d V=r d r d \theta d z$

Conclude

$$
\begin{aligned}
& \iiint_{D_{x y z}} f(x, y, z) d V \\
& =\lim _{N \rightarrow \alpha} \sum f\left(x_{i} y_{j} z_{k}\right) \Delta x \Delta y \Delta t \\
& \left(x_{i} y_{j} z_{h}\right) \in D_{x y z} \\
& =\lim _{N \rightarrow \infty} \sum_{\left(r_{i} \theta_{j} z_{m}\right) \in D_{r \theta z}}\left(r_{i} \cos \theta_{j} r_{i} \sin \theta_{j} z_{k}\right) r_{h} \Delta r \Delta \theta \Delta z
\end{aligned}
$$

(Riemain Sum in $(r, \theta z)$)

$$
\begin{array}{r}
=\iiint_{D_{r \theta z}} f(r \cos \theta, r \sin \theta, z) \underbrace{r d r d \theta d z} \\
d A=d x d y d z
\end{array}
$$

Thu Cylindrical Coordinates

$$
\begin{aligned}
& \iiint f(x, y, z) d v_{x y z} \\
& D_{x \phi t}=\iiint f(r \cos \theta, r \sin \theta, z) r d v_{r \theta z} \\
& \text { - } \text { ref }^{\text {Amplification }} \text { factor or volume }
\end{aligned}
$$

If the boundanel line up nicely enough, you can iterate the integral to get an exact value

Eg

$$
\begin{aligned}
& \iiint_{D} f(x, y, z) d v=\iiint_{D_{r \theta z}} f(r, \theta, z) r d r d \theta d z \\
& \theta_{b} g_{2}(\theta) h_{2}(r, \theta) \\
& =\int_{\theta_{a}} \int_{1} \int_{1}(\theta) h_{1}(r, \theta)
\end{aligned}
$$

Same idea different geometry for Spherical

Coordinates

- Spherical Coordinates:

$$
\begin{aligned}
& z=\rho \cos \varphi \\
& r=\rho \sin \varphi \\
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

$x=\rho \cos \theta \sin \varphi$
Q: what is the $y=s \sin \theta \sin \varphi$ amplification factor to volume?

- Q : what is A

$$
d x d y d z=A d \rho d \varphi d \theta
$$

Amplification
factor for volume
we get A from geometry:

$$
d x d y d z=r \rho d \rho d \varphi d \theta=\frac{\rho^{2} \sin \varphi}{A} d \rho d \rho d D
$$

Theorem. Spherical Coordinates

$$
\begin{aligned}
& \iiint f(x, y, z) d V \\
& D_{x y z} \\
& =\iiint_{D_{\rho Q \theta}} \bar{f}(\rho, \varphi, \theta) \underbrace{\rho^{2} \sin \varphi}_{A=\rho^{2} \sin \varphi} d \rho d \varphi d \theta \\
& \bar{f}(\rho, \varphi, \theta)=f(\underbrace{(x, y, z)} \\
& \quad(\rho \cos \theta \sin \varphi, \rho \sin \theta \sin \varphi, \rho \cos \varphi)
\end{aligned}
$$

For simple enough functions with simple enough geometry you can get an exact value by iterating the integral...
(1) Example: Find the volume of the ice-cream shaped cone D cut from $\rho \leq 1$ by cone $\varphi=\pi / 3$

Soln: $V=\iiint 1 \cdot d V$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \rho_{0}^{2} \sin \varphi d \rho d \varphi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \sin \varphi \frac{\rho^{3}}{3} d_{0}^{1} d \rho d \theta \\
& =\frac{1}{3} \int_{0}^{2 \pi}-\underbrace{\cos \varphi]_{0}^{\pi / 3}}_{-} d \theta=\frac{1}{3} \cdot \frac{1}{2} \cdot 2 \pi=\frac{\pi}{3} \\
& \quad-\cos \frac{\pi}{3}+\cos 0
\end{aligned}
$$

(2) Iterate (but don't evaluate) the integral $I=\iiint_{D} f(r, \theta, z) d v$ where D is the region boded below by plane $z=0$, laterally by the circular cylinder $x^{2}+(y-1)^{2}=1$ and above by paraboloid $z=x^{2}+y^{2}$ $x^{2}+(y-1)^{2}=1$ circle center $z=x^{2}+y^{2}$ paraboloid

$$
x^{2}+(y-1)^{2}=1
$$

Graph:

$$
\begin{gathered}
x^{2}+y^{2}-2 y+x=x \\
r^{2}=2 y=2 r \sin \theta \\
r=2 \sin \theta \quad 0 \leqslant \theta \leqslant \pi \\
I=\int_{0}^{\pi} \int_{0}^{2 \sin \theta} \int_{0}^{r^{2}} f(r, \theta, z) r d z d r d \theta
\end{gathered}
$$

